Abstract

SummaryKrüppel-like factor 4 (KLF4) is a transcription factor that has been proven necessary for both induction and maintenance of pluripotency and self-renewal. Whole-genome sequencing defined a unique mutation in KLF4 (KLF4K409Q) in human meningiomas. However, the molecular mechanism of this tumor-specific KLF4 mutation is unknown. Using genome-wide high-throughput and focused quantitative transcriptional approaches in human cell lines, primary meningeal cells, and meningioma tumor tissue, we found that a change in the evolutionarily conserved DNA-binding domain of KLF4 alters its DNA recognition preference, resulting in a shift in downstream transcriptional activity. In the KLF4K409Q-specific targets, the normally silent fibroblast growth factor 3 (FGF3) is activated. We demonstrated a neomorphic function of KLF4K409Q in stimulating FGF3 transcription through binding to its promoter and in using short tandem repeats (STRs) located within the locus as enhancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call