Abstract

Alkali-sensitive mutants which grow at pH 7.5 but not at pH 9.5 in Na(+)-rich media were isolated from Streptococcus faecalis ATCC 9790. One of the mutants, designated Nak1, lacked activities of both Na(+)-stimulated ATPase and KtrII (active K+ uptake by sodium ATPase). These activities were restored in a spontaneous revertant designated Nak1R. Active sodium extrusion from Nak1 was observed at pH 7.0, which allows the cells to generate a proton potential, but not at pH 9.5, which reverses the proton potential, making it positive. Sodium extrusion at pH 7.0 was inhibited by addition of dicyclohexylcarbodiimide and protonophores. Even at pH 9.5, Nak1 did grow well in Na(+)-poor media. In Na(+)-rich media at pH 7.5, growth of Nak1 but not that of 9790 was severely inhibited by a protonophore. These results indicate that mutant Nak1 lacks sodium ATPase but contains a sodium/proton antiporter and that sodium ATPase is essential for the growth of this organism at high pH in Na(+)-rich conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.