Abstract

Ubiquitination can significantly affect the endocytosis and degradation of plasma membrane proteins. Here, the ubiquitination of a Saccharomyces cerevisiae urea plasma membrane transporter (Dur3p) was altered. Two potential ubiquitination sites, lysine residues K556 and K571, of Dur3p were predicted and replaced by arginine, and the effects of these mutations on urea utilization and formation under different nitrogen conditions were investigated. Compared with Dur3p, the Dur3pK556R mutant showed a 20.1% decrease in ubiquitination level in yeast nitrogen base medium containing urea and glutamine. It also exhibited a >75.8% decrease in urea formation in yeast extract-peptone-dextrose medium and 41.3 and 55.4% decreases in urea and ethyl carbamate formation (a known carcinogen), respectively, in a model rice wine system. The results presented here show that the mutation of Dur3p ubiquitination sites could significantly affect urea utilization and formation. Modifying the ubiquitination of specific transporters might have promising applications in rationally engineering S.cerevisiae strains to efficiently use specific nitrogen sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.