Abstract

Wild-type p53 (wtp53) is described as a tumour suppressor gene; mutations in this gene occur in many human cancers and promote oncogenic capacity. Here, we establish that the oncogenic activity of mutant p53 (mtp53) is driven by the WASP-interacting protein (WIP). WIP knockdown from mtp53-expressing glioblastoma and breast cancer cells (BCC) greatly reduced proliferation and growth capacity of cancer stem cell (CSC)-like cells and decreased CSC-like markers (CD133, CD44 or YAP/TAZ). mtp53 overexpression in human astrocytes enhanced their proliferative capacity in suspension culture and increased expression of CSC markers and WIP. WIP knockdown compromised tumour glioblastoma and BCC growth capacity in vivo. We show that WIP is phosphorylated by AKT2 and is regulated by mtp53/p63 through enhancement of PI3K/AKT2-mediated integrin/receptor recycling pathways. WIP regulates this oncogenic pathway by controlling YAP/TAZ stability. We thus establish a new CSC signalling pathway downstream of mtp53 in which AKT2 regulates WIP and controls YAP/TAZ stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.