Abstract
Tumor suppressor p53 plays a central role in tumor suppression. p53 is the most frequently mutated gene in human cancer, and over half of human cancers contain p53 mutations. Majority of p53 mutations in cancer are missense mutations, leading to the expression of full-length mutant p53 (mutp53) protein. While the critical role of wild-type p53 in tumor suppression has been firmly established, mounting evidence has demonstrated that many tumor-associated mutp53 proteins not only lose the tumor-suppressive function of wild-type p53 but also gain new activities to promote tumorigenesis independently of wild-type p53, termed gain-of-function. Mutant p53 protein often accumulates to very high levels in tumors, contributing to malignant progression. Recently, mutp53 has become an attractive target for cancer therapy. Further understanding of the mechanisms underlying mutp53 protein accumulation and gain-of-function will accelerate the development of targeted therapies for human cancer harboring mutp53. In this review, we summarize the recent advances in the studies on mutp53 protein accumulation and gain-of-function and targeted therapies for mutp53 in human cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.