Abstract

Huntington's disease (HD) is caused by an expanded glutamine tract, which confers a novel aggregation-promoting property on the 350-kDa huntingtin protein. Using specific antibodies, we have probed the structure of the polyglutamine segment in mutant huntingtin complexes formed in cell culture from either truncated or full-length protein. Complexes formed by a mutant amino terminal fragment most frequently entail a change in conformation that eliminates reactivity with the polyglutamine-specific mAb 1F8, coincident with production of insoluble aggregate. By contrast, complexes formed by the full-length mutant protein remain soluble and are invariably 1F8-reactive, indicating a soluble polyglutamine conformation. Therefore, aggregates in HD may form by different biochemical mechanisms that invoke different possibilities for the pathogenic process. If pathogenesis is triggered by a truncated fragment, it probably involves the formation of an insoluble aggregate. However, the observation of soluble complexes in which an HD-specific pathogenic conformation of the glutamine tract remains accessible suggests that pathogenesis could also be triggered at the level of full-length huntingtin by abnormal aggregation with normal or abnormal protein partners.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call