Abstract

BackgroundHuntington’s disease (HD) is caused by the expression of a mutated variant of Huntingtin (mHtt), which results in the complex pathology characterized by a defective function of the nervous system and altered inflammatory responses. While the neuronal effects of mHtt expression have been extensively studied, its effects on the physiology of immune cells have not been fully described. Mast cells (MCs) are unique tissue-resident immune cells whose activation has been linked to protective responses against parasites and bacteria, but also to deleterious inflammatory allergic reactions and, recently, to neurodegenerative diseases.MethodsBone marrow-derived mast cells (BMMCs) were obtained from wild-type (WT-) and mHtt-expressing (R6/1) mice to evaluate the main activation parameters triggered by the high-affinity IgE receptor (FcεRI) and the Toll-like receptor (TLR) 4. Degranulation was assessed by measuring the secretion of β-hexosaminidase, MAP kinase activation was detected by Western blot, and cytokine production was determined by RT-PCR and ELISA. TLR-4 receptor and Htt vesicular trafficking was analyzed by confocal microscopy. In vivo, MC-deficient mice (c-KitWsh/Wsh) were intraperitonally reconstituted with WT or R6/1 BMMCs and the TLR4-induced production of the tumor necrosis factor (TNF) was determined by ELISA. A survival curve of mice treated with a sub-lethal dose of bacterial lipopolysaccharide (LPS) was constructed.ResultsR6/1 BMMCs showed normal β-hexosaminidase release levels in response to FcεRI, but lower cytokine production upon LPS stimulus. Impaired TLR4-induced TNF production was associated to the lack of intracellular dynamin-dependent TLR-4 receptor trafficking to perinuclear regions in BMMCs, a diminished ERK1/2 and ELK-1 phosphorylation, and a decrease in c-fos and TNF mRNA accumulation. R6/1 BMMCs also failed to produce TLR4-induced anti-inflammatory cytokines (like IL-10 and TGF-β). The detected defects were also observed in vivo, in a MCs-dependent model of endotoxemia. R6/1 and c-KitWsh/Wsh mice reconstituted with R6/1 BMMCs showed a decreased TLR4-induced TNF production and lower survival rates to LPS challenge than WT mice.ConclusionsOur data show that mHtt expression causes an impaired production of pro- and anti-inflammatory mediators triggered by TLR-4 receptor in MCs in vitro and in vivo, which could contribute to the aberrant immunophenotype observed in HD.

Highlights

  • Huntington’s disease (HD) is caused by the expression of a mutated variant of Huntingtin, which results in the complex pathology characterized by a defective function of the nervous system and altered inflammatory responses

  • Our data show that mutated variant of Huntingtin (mHtt) expression causes an impaired production of pro- and anti-inflammatory mediators triggered by Tolllike receptor (TLR)-4 receptor in Mast cells (MCs) in vitro and in vivo, which could contribute to the aberrant immunophenotype observed in HD

  • Transmission electron microscopy showed the presence of numerous mature electrodense granules in WT and R6/1 Bone marrow-derived mast cells (BMMC); no differences were found in the number of granules between genotypes (Fig. 1c, d)

Read more

Summary

Introduction

Huntington’s disease (HD) is caused by the expression of a mutated variant of Huntingtin (mHtt), which results in the complex pathology characterized by a defective function of the nervous system and altered inflammatory responses. MCs are derived from the yolk sac [3], and in adults they are generated in the bone marrow and migrate to vascularized tissues as immature precursors, to complete their differentiation under the influence of locally produced mediators [4] They are involved in both physiological and pathological immune responses, since upon a proper stimulus they release pre-stored and newly synthesized regulators of inflammation such as histamine, serotonin, proteases, lipid-derived compounds, cytokines, and chemokines. Upon receptor crosslinking when IgE molecules form complexes with specific antigens (IgE/Ag), MCs release the content of their cytoplasmic granules (like the enzyme β-hexosaminidase) in a reaction known as anaphylactic degranulation They secrete various cytokines and chemokines that are responsible for the late-phase of allergic reactions [7]. Due to their capacity to produce pro-inflammatory mediators, MCs have been implicated in acute immune reactions and in chronic deleterious conditions, like the neuroinflammation linked to neurodegenerative diseases [8, 9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call