Abstract

This study was designed to investigate the impact of single-nucleotide polymorphism-encoded cytochrome P450 enzymes (CYP3A4/5) on clinical outcomes of rivaroxaban in patients with non-valvular atrial fibrillation (NVAF) based on pharmacokinetics and pharmacodynamics (PK/PD) aspects. A prospective study enrolling 165 rivaroxaban-treated patients with NVAF was conducted. Genotyping of CYP3A4 (rs2242480, rs2246709, rs3735451, and rs4646440) and CYP3A5 (rs776746) was performed to explore their impact on the trough plasma concentrations (Ctrough) of rivaroxaban, coagulation indicators at the Ctrough including activated partial thromboplastin time (APTT) and prothrombin time (PT), and clinical outcomes. Patients with mutant genotype CYP3A4 (rs2242480, rs2246709, and rs3735451) and CYP3A5 (rs776746) had higher levels of rivaroxaban Ctrough, PT values than that of wild-type. Furthermore, a positive relationship was revealed between Ctrough and PT (r = 0.212, p = 0.007), while no significant correlation was found between Ctrough and APTT. Regarding the clinical outcomes, the minor allele carriers on rs3735451 and the minor allele (A) carriers on rs2246709 were associated with higher incidence of minor bleeding (p = 0.028 and p = 0.038, respectively) and were identified as the independent risk factors of minor bleeding treated with rivaroxaban (p = 0.024 and p = 0.036, respectively), with the receiver operating characteristic (ROC) curve validated (AUC = 0.8956, 95% CI: 0.829-0.962). The CYP3A4 polymorphisms (rs2242480, rs2246709, and rs3735451) and CYP3A5 rs776746 were associated with variations in rivaroxaban PK/PD. The minor allele (C) carriers on rs3735451 and the minor allele (A) carriers on rs2246709 were correlated with clinical outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call