Abstract

Tyramine is a biogenic compound derived from the decarboxylation of the amino acid tyrosine, and is therefore present at important concentrations in a broad range of raw and fermented foods. Owing to its chemical properties, tyramine can react with nitrite, a common food additive, in the acidic medium of stomach to form N- and C-nitroso compounds. Since toxicology studies have shown that the product of C-nitrosation of tyramine is mutagenic, in the present article tyramine nitrosation mechanisms have been characterized in order to discern which of them are favoured under conditions similar to those in the human stomach lumen. To determine the kinetic course of nitrosation reactions, a systematic study of the nitrosation of ethylbenzene, phenethylamine, and tyramine was carried out, using UV–visible absorption spectroscopy. The results show that, under conditions mimicking those of the stomach lumen, the most favoured reaction in tyramine is C-nitrosation, which generates mutagenic products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.