Abstract
Mutagenicity is among the toxicological end points that pose the highest concern. The accelerated pace of drug discovery has heightened the need for efficient prediction methods. Currently, most available tools fall short of the desired degree of accuracy, and can only provide a binary classification. It is of significance to develop a discriminative and informative model for the mutagenicity prediction. Here we developed a mutagenic probability prediction model addressing the problem, based on datasets covering a large chemical space. A novel molecular electrophilicity vector (MEV) is first devised to represent the structure profile of chemical compounds. An extended support vector machine (SVM) method is then used to derive the posterior probabilistic estimation of mutagenicity from the MEVs of the training set. The results show that our model gives a better performance than TOPKAT (http://www.accelrys.com) and other previously published methods. In addition, a confidence level related to the prediction can be provided, which may help people make more flexible decisions on chemical ordering or synthesis. The binary program (ZGTOX_1.1) based on our model and samples of input datasets on Windows PC are available at http://dddc.ac.cn/adme upon request from the authors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.