Abstract

Here we describe a one-step method to create precise modifications in the genome of Saccharomyces cerevisiae as a tool for synthetic biology, metabolic engineering, systems biology and genetic studies. Through homologous recombination, a mutagenesis cassette containing an inverted repeat of selection marker(s) is integrated into the genome. Due to its inherent instability in genomic DNA, the inverted repeat catalyzes spontaneous self-excision, resulting in precise genome modification. Since this excision occurs at very high frequencies, selection for the integration event can be followed immediately by counterselection, without the need for growth in permissive conditions. This is the first time a truly one-step method has been described for genome modification in any organism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.