Abstract
Comparative mutagenesis studies of N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) and N-(2'-deoxyguanosin-8-yl)-2-aminofluorene (dG-AF) adducts positioned in the Nar I restriction enzyme site were performed using Escherichia coli (E. coli) and simian kidney (COS-7) cells. Oligodeoxynucleotides ((5)(')TCCTCG(1)G(2)CG(3)CCTCTC) containing a recognition sequence for the Nar I restriction enzyme were modified site-specifically with dG-AAF or dG-AF. Modified and unmodified oligomers inserted into single-stranded phagemid shuttle vectors were used to transform E. coli or to transfect COS-7 cells. Following replication in host cells, progeny plasmids were recovered and analyzed for mutations. In SOS-induced E. coli, dG-AAF primarily induced one- and two-base deletions. The mutational frequency varied, depending on the position modified in the Nar I site; 91% two-base deletions were observed at G(3), while 8.4% and 2.8% deletions were detected at G(2) and G(1), respectively. In contrast, dG-AF at any position in the Nar I site failed to produce deletions, generating primarily G --> T transversions (mutational frequency, 7.6-8.4%). In COS-7 cells, both dG-AAF and dG-AF primarily induced G --> T transversions. Mutation frequencies for dG-AAF were 9.4-24%, the highest values being at G(1) and G(3). Mutation frequencies for dG-AF were 9.3-21%, the higher value at G(2). We conclude from this study that the mutation potential of dG-AAF and dG-AF depends on the structure of the adduct, the sequence context of the lesion, and the host cell used for the experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.