Abstract

Mutations to streptomycin resistance induced by ultraviolet light in Escherichia coli can lose their susceptibility to photoreversing light during excision repair and in the absence of chromosomal replication and protein synthesis, i.e., under conditions where SOS induction cannot occur. Using fusions of lac with sulA and umuC we have shown that after excision of UV damage in the presence of chloramphenicol there is a persisting, relatively stable signal capable of inducing SOS genes when protein sysnthesis is subsequently permitted. The persisting signal is formed roughly in proportion to the square of the UV dose and is about 30% photoreversible. It is suggested that the persisting SOS-inducing signal comprises a UV photoproduct (the target lesion) opposite a gap in the opposing DNA strand, and is formed by excision of one (the ancillary lesion) of a pair of closely opposed photoproducts. Calculations suggest that as few as two or three such configurations in a cell can lead to induction a sulA when protein synthesis is permitted. It is not clear whether these configurations can directly induce the SOS system because of their region of single-stranded DNA or whether the ultimate SOS-inducing signal is a more extensive single-stranded region formed when such configurations encounter a replication fork. Photoproduct/gap configurations have been previously suggested to be potentially mutagenic. UV-induced mutations to streptomycin resistance are mostly at A:T sites and are not photoreversible in fully SOS-induced bacteria in the absence of excision repair, indicating that they are not targeted at cyclobutane-type pyrimidine dimers. In SOS-induced excision-proficient bacteria there is about 39% photoreversibility which is rapidly lost after UV. This photoreversibility is attributed to many ancillary lesions being cyclobutane-type pyrimidine dimers which are excised leading to the exposure of target lesions on the opposing strand which, at these particular sites, are mostly non-photoreversible photoproducts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call