Abstract

Burkholderia pseudomallei is a human and animal pathogen in tropical regions, especially Southeast Asia and northern Australia. Currently little is known about the genetics and molecular biology of this organism. In this report, we describe the mutagenesis of B. pseudomallei with the transposon Tn5-OT182. B. pseudomallei 1026b transposon mutants were obtained at a frequency of 4.6 x 10(-4) per initial donor cell, and the transposon inserted randomly into the chromosome. We used Tn5-OT182 to identify the flagellin structural gene, fliC. We screened 3,500 transposon mutants and identified 28 motility mutants. Tn5-OT182 integrated into 19 unique genetic loci encoding proteins with homology to Escherichia coli and Salmonella typhimurium flagellar and chemotaxis proteins. Two mutants, MM35 and MM36, contained Tn5-OT182 integrations in fliC. We cloned and sequenced fliC and used it to complement MM35 and MM36 in trans. The fliC transcriptional start site and a sigmaF-like promoter were identified by primer extension analysis. We observed a significant difference in the expression of two distinct fliC-lacZ transcriptional fusions during bacterial growth, suggesting the presence of a latent intragenic transcriptional terminator in fliC. There was no significant difference in the virulence of 1026b compared to that of MM36 in diabetic rats or Syrian hamsters, suggesting that flagella and/or motility are probably not virulence determinants in these animal models of B. pseudomallei infection. A phylogenetic analysis based on the flagellins from a variety of bacterial species supported the recent transfer of B. pseudomallei from the genus Pseudomonas to Burkholderia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.