Abstract
We present a molecular modeling protocol that selects modeled protein structures based on experimental mutagenesis results. The computed effect of a point mutation should be consistent with its experimental effect for correct models; mutations that do not affect protein stability and function should not affect the computed energy of a correct model while destabilizing mutations should have unfavorable computed energies. On the other hand, an incorrect model will likely display computed energies that are inconsistent with experimental results. We added terms to our energy function which penalize models that are inconsistent with experimental results. This creates a selective advantage for models that are consistent with experimental results in the Monte Carlo simulated annealing protocol we use to search conformational space. We calibrated our protocol to predict the structure of transmembrane helix dimers using glycophorin A as a model system. Inclusion of mutational data in this protocol compensates for the limitations of our force field and the limitations of our conformational search. We demonstrate an application of this structure prediction protocol by modeling the transmembrane region of the BNIP3 apoptosis factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.