Abstract

The wild-type Bacillus subtilis spore protein, SspCwt, binds to DNA in vitro and in vivo and changes the conformation of DNA from B to A. Synthesis of the cloned SspCwt gene in Escherichia coli also causes large increases in mutation frequency. Binding of SspCwt to transforming DNA from Haemophilus influenzae made the DNA resistant to ultraviolet (UV) radiation. The mutant protein, SspCala, which does not bind DNA, did not change the UV resistance. The UV sensitivity of the DNA/SspCwt complex was not increased when the recipients of the DNA were defective in excision of pyrimidine dimers. These data indicate that the H. influenzae excision mechanism does not operate on the spore photoproduct formed by UV irradiation of the complex. Selection for the streptomycin- or erythromycin-resistance markers on the transforming DNA evidenced significant mutations at loci closely linked to these, but not at other loci. SspCwt apparently entered the cell attached to the transforming DNA, and caused mutations in adjacent loci. The amount of such mutations decreased when the transforming DNA was UV irradiated, because UV unlinks linked markers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.