Abstract
Telomere instability is one of the main sources of genome instability and may result from chromosome end loss (due to chromosome breakage at one or both ends) or, more frequently, telomere dysfunction. Dysfunctional telomeres arise when they lose their end-capping function or become critically short, which causes chromosomal termini to behave like a DNA double-strand break. Telomere instability may occur at the chromosomal or at the molecular level, giving rise, respectively, to telomere-related chromosomal aberrations or the loss or modification of any of the components of the telomere (telomere DNA, telomere-associated proteins, or telomere RNA). Since telomeres play a fundamental role in maintaining genome stability, the study of telomere instability in cells exposed to mutagens is of great importance to understand the telomere-driven genomic instability present in those cells. In the present review, we will focus on the current knowledge about telomere instability induced by physical, chemical, and biological mutagens in human cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research - Genetic Toxicology and Environmental Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.