Abstract

The engineered cardiac patch (ECP) is a promising strategy to repair infarct myocardium and restore the cardiac function. An ideal ECP should be able to mimic the primary attributes of native myocardium, which includes a high resilience, good cardiomyocyte adhesion, and synchronous contraction. Here, a mussel‐inspired dopamine crosslinker is used to integrate polypyrrole (Ppy) nanoparticles, gelatin‐methyacrylate, and poly(ethylene glycol) diacrylate into a cryogel form. The dopamine crosslinker and Ppy nanoparticles are coordinated to obtain optimal mechanical and superelastic properties for the ECP. The dopamine facilitates the uniform distribution of the Ppy nanoparticles, which migrate and fuse from the scaffold to the surface of the cardiomyocytes, revealing a potential mechanism for restoring infarct myocardium. The incorporated Ppy nanoparticles thus significantly enhance the functionalization of the cardiomyocytes, resulting in excellent synchronous contraction by increasing the expression of α‐actinin and CX‐43. Cardiomyocytes‐loaded ECP can improve the cardiac function in myocardial‐infarction (MI) affected rat models. The results show that the fractional shortening and ejection fraction are elevated by about 50% and that the infarct size is reduced by 42.6%. Collectively, this study highlights an effective cardiac patch based on mussel‐inspired conductive particle adhesion and a superelastic cryogel promising for the restoration of infarcted myocardium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call