Abstract
Summary1. Understanding mechanisms behind the distribution of organisms along a gradient of hydrological connectivity is crucial for sustainable management of river–floodplain systems. We tested the hypothesis that frequency of flood pulses exerts a direct influence on the distribution of freshwater mussels (Unionoida) by creating a local environment that limits their fitness.2. Multiscale habitat analyses combined with transplant‐rearing experiments were carried out with a focus on abundance, presence/absence, survival rates and growth rates of mussels. Sixty‐nine floodplain waterbodies (FWBs) were surveyed within a 15‐km lowland segment of the Kiso River in Japan.3. The abundance of mussels significantly increased with increased frequency of inundation associated with flood pulses at the among‐FWB scale, while the probability of occurrence of mussels was negatively predicted by the amount of benthic organic matter at the within‐FWB scale.4. Field‐rearing experiments showed that survival rates were low and growth rates nearly zero in infrequently inundated FWBs (these FWBs had no naturally occurring resident mussels). In such FWBs, hypoxia (DO < 2 mg L−1) was frequently observed near the bottom when temperature was optimal for mussel growth (>15 °C).5. These findings demonstrated that flood pulse frequency was the most important factor in determining mussel distribution in FWBs because it directly limits mussels’ fitness by mediating local environmental factors, possibly dissolved oxygen (DO) levels. Successful restoration efforts for mussel habitat conservation should focus on processes that lead to improved local conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.