Abstract
In this study, poly(lactic-co-glycolic acid) (PLGA)-gelatin scaffolds were fabricated using the freeze-casting technique. Polydopamine (PDA) coating was applied on the surface of scaffolds to enhance the hydrophilicity, bioactivity, and cellular behavior of the composite constructs. Further, the synergistic effect of PDA coating and lamellar microstructure of scaffolds was evaluated on the promotion of properties. Based on morphological observations, freeze-casting constructs showed lamellar pore channels while the uniformity and pore size were slightly affected by deposition of PDA. The hydrophilicity and swelling capacity of the scaffolds were assessed using contact angle measurement and phosphate buffered saline absorption ratio. The results indicated a significant increment in water-matrix interactions following surface modification. The evaluation of the biodegradation ratio revealed the higher degree of degradation in PDA-coated samples owing to the presence of hydrophilic functional groups in the chemical structure of PDA. On the other hand, the bioactivity potential of PDA in the simulated body fluid solution confirmed the possibility of using coated constructs as a bone reconstructive substitute. The improvement of cellular attachment and filopodia formation in PDA-contained matrixes was the other benefit of the coating process. Furthermore, cellular proliferation and ALP activity were enhanced after PDA coating. The suggested PDA-coated PLGA-gelatin scaffolds can be applied in bone tissue regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.