Abstract

Bacterial infections and limited surface lubrication are the two key challenges for bioimplants in dynamic contact with tissues. However, the simultaneous lubricating and antibacterial properties of the bioimplants have rarely been investigated. In this work, we successfully developed a multifunctional coating with simultaneous antibacterial and lubricating properties for surface functionalization of bioimplant materials. The multifunctional coating was fabricated on a polyurethane (PU) substrate via polydopamine (PDA)-assisted multicomponent codeposition, containing polyethyleneimine (PEI) and trace amounts of copper (Cu) as synergistic antibacterial components and zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) as the lubricating component. The obtained PDA(Cu)/PEI/PMPC coating showed excellent antibacterial activity (antibacterial efficiency: ∼99%) to both Escherichia coli and Staphylococcus aureus compared with bare PU. The excellent antibacterial properties were attributed to the combined effect of anti-adhesion capability of hydrophilic PMPC and PEI and bactericidal activity of Cu in the coating. Meanwhile, the coefficient of friction of the coating was significantly decreased by ∼52% compared with bare PU owing to the high hydration feature of PMPC, suggesting the superior lubricating property. Furthermore, the PDA(Cu)/PEI/PMPC coating was highly biocompatible toward human umbilical vein endothelial cells demonstrated by in vitro cytotoxicity tests. This study not only contributes to the chemistry of PDA-assisted multicomponent codeposition but also provides a facile and practical way for rational design of multifunctional coatings for medical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.