Abstract
Endochondral ossification (ECO) plays an integral part in bone augmentation, which undergoes sequential processes including mesenchymal stem cells (MSC) condensation, chondrocyte differentiation, chondrocyte hypertrophy, and mineralized bone formation. Thus, accelerating these steps will speed up the osteogenesis process through ECO. Herein, inspired by the marine mussels' adhesive mechanism, a bioactive glass-dopamine (BG-Dopa) hydrogel was prepared by distributing the micro-nano BG to aldehyde modified hyaluronic acid with dopamine-modified gelatin. By in vitro and in vivo experiments, we confirm that after implanting in the bone augmentation position, the hydrogel can adhere to the cortical bone surface firmly without sliding. Moreover, the condensation and hypertrophy of stem cells were accelerated at the early stage of ECO. Whereafter, the osteogenic differentiation of the hypertrophic chondrocytes was promoted, which lead to accelerating the late stage of ECO process to achieve more bone augmentation. This experiment provides a new idea for the design of bone augmentation materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.