Abstract

Marine mussels utilize a variety of DOPA-rich proteins for purposes of underwater adhesion, as well as for creating hard and flexible surface coatings for their tough and stretchy byssal fibers. In the present study, moderately strong, yet reversible wet adhesion between the protective mussel coating protein, mcfp-1, and amorphous titania was measured with a surface force apparatus (SFA). In parallel, resonance Raman spectroscopy was employed to identify the presence of bidentate DOPA-Ti coordination bonds at the TiO(2)-protein interface, suggesting that catechol-TiO(2) complexation contributes to the observed reversible wet adhesion. These results have important implications for the design of protective coatings on TiO(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.