Abstract

Climate change is increasing the temperature variability animals face, and thermal acclimatization allows animals to adjust adaptively to this variability. Although the rate of heat acclimatization has received some study, little is known about how long these adaptive changes remain without continuing exposure to heat stress. This study explored the rate at which field acclimatization states are lost when temperature variability is minimized during constant submersion. California mussels (Mytilus californianus) with different acclimatization states were collected from high- and low-zone sites (∼12 versus ∼5°C daily temperature ranges, respectively) and then kept submerged at 15°C for 8weeks. Each week, the cardiac thermal performance of mussels was measured as a metric of acclimatization state: critical (Tcrit) and flatline (Tflat) temperatures were recorded. Over 8weeks of constant submersion, the mean Tcrit of high-zone mussels decreased by 1.07°C from baseline, but low-zone mussels' mean Tcrit was unchanged. High- and low-zone mussels' mean maximum heart rate (HR) and resting HR decreased ∼12 and 35%, respectively. Tflat was unchanged in both groups. These data suggest that Tcrit and HR are more physiologically plastic in response to the narrowing of an animal's daily temperature range than Tflat is, and that an animal's prior acclimatization state (high versus low) influences the acclimatory capacity of Tcrit Approximately 2months were required for the cardiac thermal performance of the high-zone mussels to reach that of the low-zone mussels, suggesting that acclimatization to high and variable temperatures may persist long enough to enable these animals to cope with intermittent bouts of heat stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.