Abstract

The main goal of this study was to investigate the effects of acoustic characteristics, including timbre and fundamental frequency (F0), on the musical pitch discrimination of cochlear implant users. Eight postlingually deafened cochlear implant users were recruited, along with 8 control subjects with normal hearing. Pitch discrimination tests were carried out using test stimuli from 4 musical instruments plus synthetic complex stimuli. Three reference tones with different F0s were used. The mean difference limens were 1.8 to 10.7 semitones in the just-noticeable difference task and 2.1 to 13.6 semitones in the pitch-direction discrimination task for different timbre and F0 combinations. Three-way analysis of variance showed that the acoustic characteristics of the musical stimuli, such as timbre and F0, significantly influenced pitch discrimination performance. Acoustic characteristics determine the complexity of the electrical stimulation pattern, which directly affects performance in pitch discrimination. A place pattern with a clear and regular low-order harmonic structure is most important for good pitch discrimination. A clear F0-related temporal pattern is also useful when the F0 is low. Pitch perception performance will worsen when there is interference in the high-frequency channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.