Abstract

A statistical pattern-recognition technique was applied to the classification of musical instrument tones within a taxonomic hierarchy. Perceptually salient acoustic features—related to the physical properties of source excitation and resonance structure—were measured from the output of an auditory model (the log-lag correlogram) for 1023 isolated tones over the full pitch ranges of 15 orchestral instruments. The data set included examples from the string (bowed and plucked), woodwind (single, double, and air reed), and brass families. Using 70%/30% splits between training and test data, maximum a posteriori classifiers were constructed based on Gaussian models arrived at through Fisher multiple-discriminant analysis. The classifiers distinguished transient from continuant tones with approximately 99% correct performance. Instrument families were identified with approximately 90% performance, and individual instruments were identified with an overall success rate of approximately 70%. These preliminary analyses compare favorably with human performance on the same task and demonstrate the utility of the hierarchical approach to classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.