Abstract

Music performance can be cognitively and physically demanding. These demands vary across the course of a performance as the content of the music changes. More demanding passages require performers to focus their attention more intensity, or expend greater “mental effort.” To date, it remains unclear what effect different cognitive-motor demands have on performers' mental effort. It is likewise unclear how fluctuations in mental effort compare between performers and perceivers of the same music. We used pupillometry to examine the effects of different cognitive-motor demands on the mental effort used by performers and perceivers of classical string quartet music. We collected pupillometry, motion capture, and audio-video recordings of a string quartet as they performed a rehearsal and concert (for live audience) in our lab. We then collected pupillometry data from a remote sample of musically-trained listeners, who heard the audio recordings (without video) that we captured during the concert. We used a modelling approach to assess the effects of performers' bodily effort (head and arm motion; sound level; performers' ratings of technical difficulty), musical complexity (performers' ratings of harmonic complexity; a score-based measure of harmonic tension), and expressive difficulty (performers' ratings of expressive difficulty) on performers' and listeners' pupil diameters. Our results show stimulating effects of bodily effort and expressive difficulty on performers' pupil diameters, and stimulating effects of expressive difficulty on listeners' pupil diameters. We also observed negative effects of musical complexity on both performers and listeners, and negative effects of performers' bodily effort on listeners, which we suggest may reflect the complex relationships that these features share with other aspects of musical structure. Looking across the concert, we found that both of the quartet violinists (who exchanged places halfway through the concert) showed more dilated pupils during their turns as 1st violinist than when playing as 2nd violinist, suggesting that they experienced greater arousal when “leading” the quartet in the 1st violin role. This study shows how eye tracking and motion capture technologies can be used in combination in an ecological setting to investigate cognitive processing in music performance.

Highlights

  • Music performance is a cognitively demanding activity that requires many processes to be carried out in parallel, including overt motor production, covert processing of musical information, monitoring of musical output, and monitoring of audience responses (Bishop and Keller, 2021)1

  • Both models showed a positive effect of Expressive difficulty and negative effects of Harmonic complexity and Technical difficulty on pupil diameter

  • This study investigated the effects of harmonic complexity, bodily effort, and expressive difficulty on mental effort and arousal during music performance and listening

Read more

Summary

Introduction

Music performance is a cognitively demanding activity that requires many processes to be carried out in parallel, including overt motor production, covert processing of musical information, monitoring of musical output, and monitoring of audience responses (Bishop and Keller, 2021). Performances by skilled musicians may seem rather effortless to audience members, but they draw on a combination of effortful and automatic processes. These processes involve performers’ anticipation of each other’s playing (including more effortful imagery and simulation and more automatic melodic expectancies), adaptation to each other’s playing (including more effortful period correction and more automatic phase correction), and control of attention (including more effortful directed listening and more automatic passive monitoring). Less skilled performers may lack attention regulation abilities and, as a result, distribute attention nonoptimally—for instance, by focusing on their own playing when they should be listening to their co-performers, or sacrificing expressivity to focus on note accuracy

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.