Abstract

BackgroundAlthough many musicians perceive music performance anxiety (MPA) as a significant problem, studies about the psychobiological and performance-related concomitants of MPA are limited. Using the biopsychosocial model of challenge and threat as theoretical framework, we aim to investigate whether musicians’ changes in their psychobiological responses and performance quality from a private to a public performance are moderated by their general MPA level. According to the challenge and threat framework, individuals are in a threat state when the perceived demands of a performance situation outweigh the perceived resources, whereas they are in a challenge state when the perceived resources outweigh the perceived demands. The resources-demands differential (resources minus demands) and the cardiovascular challenge-threat index (sum of cardiac output and reverse scored total peripheral resistance) are the main indices of these states. We postulate that the relationship between general MPA level and performance quality is mediated by these challenge and threat measures.MethodsWe will test 100 university music students reporting general MPA levels ranging from low to high. They will perform privately (i.e., without audience) and publicly (i.e., with an audience) on two separate days in counterbalanced order. During each performance session, we will record their cardiovascular and respiratory activity and collect saliva samples and self-reported measures. Measures of primary interest are self-reported anxiety, the resources-demands differential, the cardiovascular challenge-threat index, sigh rate, total respiratory variability, partial pressure of end-tidal carbon dioxide and the salivary biomarkers cortisol, dehydroepiandrosterone, and alpha-amylase. Both, the participants and anonymous experts will evaluate the performance quality from audio recordings.DiscussionThe results of the planned project are expected to contribute to a more comprehensive understanding of the psychobiology of MPA and of the processes that influence musicians’ individual reactions to performance situations. We also anticipate the findings of this project to have important implications for the development and implementation of theory-based interventions aimed at managing musicians’ anxiety and improving performance quality. Thanks to the use of multimethod approaches incorporating psychobiology, it might be possible to better assess the progress and success of interventions and ultimately improve musicians’ chance to have a successful professional career.Trial registrationNot applicable.

Highlights

  • Many musicians perceive music performance anxiety (MPA) as a significant problem, studies about the psychobiological and performance-related concomitants of MPA are limited

  • We anticipate the findings of this project to have important implications for the development and implementation of theory-based interventions aimed at managing musicians’ anxiety and improving performance quality

  • SAA is an enzyme secreted from the salivary glands that has been increasingly used as a marker of the activity of the sympathoadrenal-medullary (SAM) axis, another important regulatory system involved in the response to psychosocial stressors [16,17,18]

Read more

Summary

Introduction

Many musicians perceive music performance anxiety (MPA) as a significant problem, studies about the psychobiological and performance-related concomitants of MPA are limited. Using the biopsychosocial model of challenge and threat as theoretical framework, we aim to investigate whether musicians’ changes in their psychobiological responses and performance quality from a private to a public performance are moderated by their general MPA level. Research on the psychophysiological concomitants of MPA is scant With regard to their subjective experience, general MPA level has been associated with significant increases in state anxiety from a private to a public performance [3, 7]. Analyses of the respiratory responses showed that the general MPA level significantly moderated changes from a private to a public performance in partial pressure of end-tidal carbon dioxide (PetCO2), total respiratory variability (quantified by the coefficient of variation) and sigh rate [7, 8]. Researchers have not investigated cardiovascular differences as a function of general MPA level other than for HR and HR variability (HRV) [8]

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call