Abstract

Given the huge size of music collections available on the Web, automatic genre classification is crucial for the organization, search, retrieval and recommendation of music. Different kinds of features have been employed as input to classification models which have been shown to achieve high accuracy in classification scenarios under controlled environments. In this work, we investigate two components of the music genre classification process: a novel feature vector obtained directly from a description of the musical structure described in MIDI files (named as structural features), and the performance of relational classifiers compared to the traditional ones. Neither structural features nor relational classifiers have been previously applied to the music genre classification problem. Our hypotheses are: (i) the structural features provide a more effective description than those currently employed in automatic music genre classification tasks, and (ii) relational classifiers can outperform traditional algorithms, as they operate on graph models of the data that embed information on the similarity between music tracks. Results from experiments carried out on a music dataset with unbalanced distribution of genres indicate these hypotheses are promising and deserve further investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.