Abstract

This paper studies the problem of line spectral estimation in the continuum of a bounded interval with one snapshot of array measurement. The single-snapshot measurement data are turned into a Hankel data matrix which admits the Vandermonde decomposition and is suitable for the MUSIC algorithm. The MUSIC algorithm amounts to finding the null space (the noise space) of the adjoint of the Hankel matrix, forming the noise-space correlation function and identifying the s smallest local minima of the noise-space correlation as the frequency set.In the noise-free case exact reconstruction is guaranteed for any arbitrary set of frequencies as long as the number of measurement data is at least twice the number of distinct frequencies to be recovered. In the presence of noise the stability analysis shows that the perturbation of the noise-space correlation is proportional to the spectral norm of the noise matrix as long as the latter is smaller than the smallest (nonzero) singular value of the noiseless Hankel data matrix. Under the assumption that the true frequencies are separated by at least twice the Rayleigh Length (RL), the stability of the noise-space correlation is proved by means of novel discrete Ingham inequalities which provide bounds on the largest and smallest nonzero singular values of the noiseless Hankel data matrix.The numerical performance of MUSIC is tested in comparison with other algorithms such as BLO-OMP and SDP (TV-min). While BLO-OMP is the stablest algorithm for frequencies separated above 4 RL, MUSIC becomes the best performing one for frequencies separated between 2 RL and 3 RL. Also, MUSIC is more efficient than other methods. MUSIC truly shines when the frequency separation drops to 1 RL or below when all other methods fail. Indeed, the resolution length of MUSIC decreases to zero as noise decreases to zero as a power law with an exponent smaller than an upper bound established by Donoho.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.