Abstract

In most Music Emotion Recognition (MER) tasks, researchers tend to use supervised learning models based on music features and corresponding annotation. However, few researchers have considered applying unsupervised learning approaches to labeled data except for feature representation. In this paper, we propose a segment-based two-stage model combining unsupervised learning and supervised learning. In the first stage, we split each music excerpt into contiguous segments and then utilize an autoencoder to generate segment-level feature representation. In the second stage, we feed these time-series music segments to a bidirectional long short-term memory deep learning model to achieve the final music emotion classification. Compared with the whole music excerpts, segments as model inputs could be the proper granularity for model training and augment the scale of training samples to reduce the risk of overfitting during deep learning. Apart from that, we also apply frequency and time masking to segment-level inputs in the unsupervised learning part to enhance training performance. We evaluate our model on two datasets. The results show that our model outperforms state-of-the-art models, some of which even use multimodal architectures. And the performance comparison also evidences the effectiveness of audio segmentation and the autoencoder with masking in an unsupervised way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.