Abstract

Efficient and intelligent music information retrieval is a very important topic of the 21st century. With the ultimate goal of building personal music information retrieval systems, this paper studies the problem of identifying ldquosimilarrdquo artists using features from diverse information sources. In this paper, we first present a clustering algorithm that integrates features from both sources to perform bimodal learning. We then present an approach based on the generalized constraint clustering algorithm by incorporating the instance-level constraints. The algorithms are tested on a data set consisting of 570 songs from 53 albums of 41 artists using artist similarity provided by All Music Guide. Experimental results show that the accuracy of artist similarity identification can be significantly improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.