Abstract
Neurogenesis relies on the establishment of the proper number and precisely controlled proliferation of neuroblasts, the neuronal precursor cells. A role for the mushroom body defect (mud) gene in both of these aspects of neuroblast behavior, as well as possible roles in other aspects of fruit fly biology, is implied by phenotypes associated with mud mutations. We have localized mud by determining the sequence change in one point mutant, identifying a predicted ORF affected by the mutation, and showing that an appropriate segment of the genome rescues mud mutant phenotypes. An analysis of mud cDNAs and a survey of mud transcripts by Northern blotting indicate that the gene is subject to differential splicing and is expressed primarily during embryogenesis but also, at lower levels, during subsequent developmental stages in a sexually dimorphic manner. The gene is predicted to encode a polypeptide without obvious homologs but with two prominent structural features, a long coiled coil that constitutes the central core of the protein and a carboxyl-terminal transmembrane domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.