Abstract
A multilingual sentiment identification system (MuSES) implements three different sentiment identification algorithms. The first algorithm augments previous compositional semantic rules by adding rules specific to social media. The second algorithm defines a scoring function that measures the degree of a sentiment, instead of simply classifying a sentiment into binary polarities. All such scores are calculated based on a large volume of customer reviews. Due to the special characteristics of social media texts, a third algorithm takes emoticons, negation word position, and domain-specific words into account. In addition, a proposed label-free process transfers multilingual sentiment knowledge between different languages. The authors conduct their experiments on user comments from Facebook, tweets from Twitter, and multilingual product reviews from Amazon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.