Abstract

Based on MUSE integral-field data we present evidence for a radial variation at the low-mass end of the stellar initial-mass function (IMF) in the central regions of the giant early-type galaxy NGC4486 (M87). We used state-of-the-art stellar population models and the observed strength of various IMF-sensitive absorption-line features to solve for the best low-mass tapered "bimodal" form of the IMF, while accounting also for radial variations in stellar metallicity, the overall $\alpha$-elements abundance, and the abundance of individual elements such as Ti, O, Na and Ca. Our analysis reveals a strong IMF gradient in M87, corresponding to an exceeding fraction of low-mass stars compared to the case of the Milky Way toward the center of M87 that drops to nearly Milky-way levels by 0.4 $R_e$. This IMF gradient is found to correlate well with both the radial profile for stellar metallicity and for $\alpha$-elements abundance but not with stellar velocity dispersion. Such IMF variations correspond to over a factor two increase in stellar mass-to-light M/L ratio compared to the case of a Milky-way like IMF, consistent with other investigations into IMF gradients in early-type galaxies, including recent dynamical constraints on M/L radial variations in M87 by Oldham & Auger. In addition to constraining the IMF in M87 we also looked into the abundance of Sodium, which turned up to be super-Solar over the entire radial range of our MUSE observations and to exhibit a considerable negative gradient. These findings suggest an additional role of metallicity in boosting the Na-yields in the central, metal-rich regions of M87 during its early and brief star-formation history. Our work adds the case of M87 to the few objects that as of today have radial constraints on their IMF or [Na/Fe] abundance, while also illustrating the accuracy that MUSE could bring to this kind of investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call