Abstract
This paper describes an extension to the constraint satisfaction problem (CSP) called MUSE CSP (MUltiply SEgmented Constraint Satisfaction Problem). This extension is especially useful for those problems which segment into multiple sets of partially shared variables. Such problems arise naturally in signal processing applications including computer vision, speech processing, and handwriting recognition. For these applications, it is often difficult to segment the data in only one way given the low-level information utilized by the segmentation algorithms. MUSE CSP can be used to compactly represent several similar instances of the constraint satisfaction problem. If multiple instances of a CSP have some common variables which have the same domains and constraints, then they can be combined into a single instance of a MUSE CSP, reducing the work required to apply the constraints. We introduce the concepts of MUSE node consistency, MUSE arc consistency, and MUSE path consistency. We then demonstrate how MUSE CSP can be used to compactly represent lexically ambiguous sentences and the multiple sentence hypotheses that are often generated by speech recognition algorithms so that grammar constraints can be used to provide parses for all syntactically correct sentences. Algorithms for MUSE arc and path consistency are provided. Finally, we discuss how to create a MUSE CSP from a set of CSPs which are labeled to indicate when the same variable is shared by more than a single CSP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.