Abstract

Over the past decade rapid advancements in molecular imaging (MI) and artificial intelligence (AI) have revolutionized traditional musculoskeletal radiology. Molecular imaging refers to the ability of various methods to in vivo characterize and quantify biological processes, at a molecular level. The extracted information provides the tools to understand the pathophysiology of diseases and thus to early detect, to accurately evaluate the extend and to apply and evaluate targeted treatments. At present, molecular imaging mainly involves CT, MRI, radionuclide, US, and optical imaging and has been reported in many clinical and preclinical studies. Although originally MI techniques targeted at central nervous system disorders, later on their value on musculoskeletal disorders was also studied in depth. Meaningful exploitation of the large volume of imaging data generated by molecular and conventional imaging techniques, requires state-of-the-art computational methods that enable rapid handling of large volumes of information. AI allows end-to-end training of computer algorithms to perform tasks encountered in everyday clinical practice including diagnosis, disease severity classification and image optimization. Notably, the development of deep learning algorithms has offered novel methods that enable intelligent processing of large imaging datasets in an attempt to automate decision-making in a wide variety of settings related to musculoskeletal trauma. Current applications of AI include the diagnosis of bone and soft tissue injuries, monitoring of the healing process and prediction of injuries in the professional sports setting. This review presents the current applications of novel MI techniques and methods and the emerging role of AI regarding the diagnosis and evaluation of musculoskeletal trauma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.