Abstract
AIM: To describe features of the morphology of the carpus, quantify the thickness of hyaline and calcified cartilage, and to describe the morphology and density of subchondral bone in the third carpal bone (C3) of young Thoroughbred horses in early training. METHODS: C3 of seven 2-year-old horses in training and seven untrained horses matched for age, sex and breed were assessed by gross appearance, computed tomography, fine-structure radiography, image analysis of high-resolution photographs, and histology. RESULTS: Macroscopic lesions in cartilage were few and mild, and not significantly different between groups. High bone mineral density (BMD), in some cases typical of cortical bone, was confined to the dorsal load path, and was significantly higher in trained than in untrained horses (p<0.01). In the most dorsoproximal aspect of the radial articular facet, apparently outside the dorsal load path, the BMD in both trained and untrained horses was significantly less than in other regions of interest (ROIs). Adaptive increase in density was associated with thickening of the (junctions of) trabeculae oriented proximo-distally. Hyaline cartilage was thicker (p<0.001) in the concavity of the radial articular facet than dorsal or palmar to it, and was thicker in the trained than untrained group (p=0.007). No such differences were detected in the thickness of articular calcified cartilage (ACC). CONCLUSIONS: The rapid response of bone in C3 to relatively small amounts of high-speed exercise was confirmed. A previously unreported increase in thickness of hyaline cartilage was evident, perhaps indicating that this tissue may be more responsive than hitherto thought, at least to particular types of exercise at particular times. These changes occurred with little evidence of abnormality, and thus appeared to be adaptive to the exercise regimen. The model developed should be used for further definition of the exercise stimulus required to produce adaptive, protective changes in sites susceptible to athletic injury. CLINICAL RELEVANCE: The data will serve as reference for use in subsequent imaging studies in which sophisticated aids such as magnetic resonance imaging (MRI) may be used to predict carpal lesions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.