Abstract

In a comparison of traditional and theoretical exercise efficiency calculations male subjects were studied during steady-rate cycle ergometer exercises of "0," 200, 400, 600, and 800 kgm/min while pedaling at 40, 60, 80, and 100 rpm. Gross (no base-line correction), net (resting metabolism as base-line correction), work (unloading cycling as base-line correction), and delta (measurable work rate as base-line correction) efficiencies were computed. The result that gross (range 7.5-20.4%) and net (9.8-24.1%) efficiencies increased with increments in work rate was considered to be an artifact of calculation. A LINEAR OR SLIGHTLY EXPONENTIAL RELATIONSHIP BETWEEN CALORIC OUTPUT AND WORK RATE DICTATES EITHER CONSTANT OR DECREASING EFFICIENCY WITH INCREMENTS IN WORK. The delta efficiency (24.4-34.0%) definition produced this result. Due to the difficulty in obtaining 0 work equivalents, the work efficiency definition proved difficult to apply. All definitions yielded the result of decreasing efficiency with increments in speed. Since the theoretical-thermodynamic computation (assuming mitochondrial P/O = 3.0 and delta G = -11.0 kcal/mol for ATP) holds only for CHO, the traditional mode of computation (based upon VO2 and R) was judged to be superior since R less than 1.0. Assuming a constant phosphorylative-coupling efficiency of 60%, the mechanical contraction-coupling efficiency appears to vary between 41 and 57%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.