Abstract

Muscle-fiber conduction velocity (CV) was estimated from surface electromyographic (EMG) signals during isometric contractions and during short (150-200 ms), explosive, dynamic exercises. Surface EMG signals were recorded with four linear adhesive arrays from the vastus lateralis and medialis muscles of 12 healthy subjects. Isometric contractions were at linearly increasing force from 0% to 100% of the maximum. The dynamic contractions consisted of explosive efforts of the lower limb on a sledge ergometer. For the explosive contractions, muscle-fiber CV was estimated in seven time-windows located along the ascending time interval of the force. There was a significant correlation between CV values during the isometric ramp and explosive contractions (R = 0.75). Moreover, CV estimates increased significantly from (mean +/- SD) 4.32 +/- 0.46 m/s to 4.97 +/- 0.45 m/s during the increasing-force explosive task. It was concluded that CV can be estimated reliably during dynamic tasks involving fast limb movements and that, in these contractions, it may provide important information on motor-unit control properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.