Abstract

We previously demonstrated that prefrontal subthreshold repetitive transcranial magnetic stimulation (rTMS) may reduce motor cortex excitability. We have now examined whether muscle vibration (MV) can compensate for this depression. We enrolled 25 healthy volunteers (aged 22 to 37 years) who received 5 HZ, 10% subthreshold prefrontal rTMS for 12 s. The extensor carpi radialis muscle was vibrated with an electromagnetic mechanical stimulator with a stimulation frequency of 120 HZ and 0.5 mm amplitude. Motor evoked potentials (MEPs) from the flexor carpi radialis muscle (FCR) following single-pulse transcranial magnetic stimulation (TMS) were recorded at baseline, and after 4, 8, and 12 s. During prefrontal rTMS, MEPs of the FCR exhibited a serial depression (P = 0.001). This effect did not occur during MV. We conclude that rTMS of the prefrontal cortex may inhibit the corticospinal system. This depression may be compensated by MV, suggesting that vibration changes motor cortex excitability. The underlying mechanism might be an input from Ia sensory afferents to the motor and prefrontal cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.