Abstract

How do muscle synergies change as motor skills are learned? The purpose of this study was to investigate the relationship between synergy number and skill acquisition, and to examine learning-related changes in synergy structure and activation patterns. We performed muscle synergy analysis using non-negative matrix factorization to identify muscle synergies from activation patterns of ten major leg muscles before and after recreational cyclists learned a novel one-legged pedal force aiming task (Park, Van Emmerik, & Caldwell, 2021). Synergy number was defined as the smallest number of factors from the matrix factorization algorithm that could explain more than the predefined threshold values. Improvements in pedal force direction after practice occurred without a change in the number of muscle synergies (four), suggesting that task constraints (e.g. the need for smooth pedaling motion) in this novel targeting task may limit the CNS to the same number of muscle synergies before and after practice. Improved task performance while continuing to satisfy multiple biomechanical tasks was obtained with changes in structure (muscle weightings) for one synergy, and activation amplitudes without changes in timing or pattern for three synergies. In each crank cycle quadrant, multiple synergies were altered in either structure or activation amplitude, suggesting that the cooperative changes may be essential for improving task performance while producing a smooth pedaling motion. Changes in both synergy structure and activation levels could be muscle coordination strategies in motor skill learning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call