Abstract

BackgroundPrevious studies have shown that a cerebrovascular accident disrupts the coordinated control of leg muscles during locomotion inducing asymmetric gait patterns. However, the ability of muscle synergies and spinal maps to reflect the redistribution of the workload between legs after the trauma has not been investigated so far.MethodsTo investigate this issue, twelve post-stroke and ten healthy participants were asked to walk on a treadmill at controlled speeds (0.5, 0.7, 0.9, 1.1 km/h), while the EMG activity of twelve leg muscles was recorded on both legs. The synergies underlying muscle activation and the estimated motoneuronal activity in the lumbosacral enlargement (L2-S2) were computed and compared between groups.ResultsResults showed that muscle synergies in the unaffected limb were significantly more comparable to those of the healthy control group than the ones in the affected side. Spinal maps were dissimilar between the affected and unaffected sides highlighting a significant shift of the foci of the activity toward the upper levels of the spinal cord in the unaffected leg.ConclusionsMuscle synergies and spinal maps reflect the asymmetry as a motor deficit after stroke. However, further investigations are required to support or reject the hypothesis that the altered muscular organization highlighted by muscle synergies and spinal maps may be due to the concomitant contribution of the altered information coming from the upper part of the CNS, as resulting from the stroke, and to the abnormal sensory feedback due to the neuromuscular adaptation of the patients.

Highlights

  • Previous studies have shown that a cerebrovascular accident disrupts the coordinated control of leg muscles during locomotion inducing asymmetric gait patterns

  • Literature has widely documented that the activity of many muscles while achieving both upper and lower limbs related motor tasks is characterized by a modular organization [1,2,3,4,5,6,7]

  • This strategy is often described by “muscle synergies” representing sets of muscles outlined in weight coefficients, which are synchronously activated by basic “temporal components”

Read more

Summary

Introduction

Previous studies have shown that a cerebrovascular accident disrupts the coordinated control of leg muscles during locomotion inducing asymmetric gait patterns. Simulation studies have further corroborated this result confirming that a simple neural control strategy involving five activation modules is sufficient to produce well-coordinated walking [14,15,16] On the whole, these evidences suggest that muscle synergies describe the elementary biomechanical subtasks of locomotion (e.g., weight acceptance, body support and forward progression, leg deceleration) and reflect the relationship between the central control and the output of the motor tasks [2,17,18,19].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.