Abstract

Muscle stem cells (MuSCs) are tissue-resident stem cells required for growth and repair of skeletal muscle, that are otherwise maintained in a cell-cycle-arrested state called quiescence. While quiescence was originally believed to be a state of cellular inactivity, increasing evidence suggests that quiescence is dynamically regulated and contributes to stemness, the long-term capacity to maintain regenerative functions. Here, we review the current understanding of MuSC quiescence and highlight recently discovered molecular markers, which differentiate depth of quiescence and influence self-renewal capacity. We also discuss how quiescent MuSCs integrate paracrine factors from their niche and dynamically regulate cell signaling, metabolism and proteostasis as they anticipate physiological needs, and how perturbing these cues during aging impairs muscle regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.