Abstract

Hypoadiponectinemia and adiponectin resistance are implicated in the aetiology of obesity-related cardiometabolic disorders, hence represent a potential therapeutic axis. Here we characterised the effects of in vivo electrotransfer-mediated overexpression of the adiponectin receptors, AdipoR1 or AdipoR2, into tibialis anterior muscle (TAM) of lean or obese mice. In lean mice, TAM-specific overexpression of AdipoR1 (TAMR1) or AdipoR2 (TAMR2) increased phosphorylation of AMPK, AKT and ERK and expression of the insulin responsive glucose transporter glut4. In contrast, only TAMR2 increased pparα and a target gene acox1. These effects were decreased in obese mice despite no reduction in circulating adiponectin levels. TAMR2 also increased expression of adipoQ in TAM of lean and obese mice. Furthermore, in obese mice TAMR2 promoted systemic effects including; decreased weight gain; reduced epididymal fat mass and inflammation; increased epididymal adipoQ expression; increased circulating adiponectin. Collectively, these results demonstrate that AdipoR1 and AdipoR2 exhibit overlapping and distinct effects in skeletal muscle consistent with enhanced adiponectin sensitivity but these appear insufficient to ameliorate established obesity-induced adiponectin resistance. We also identify systemic effects upon TAMR2 in obese mice and postulate these are mediated by altered myokine production. Further studies are warranted to investigate this possibility which may reveal novel therapeutic approaches.

Highlights

  • Hypoadiponectinemia and adiponectin resistance are implicated in the aetiology of obesity-related cardiometabolic disorders, represent a potential therapeutic axis

  • Cell-based systems we previously demonstrated that acute treatment with globular adiponectin resulted in different temporal signaling profiles in cells overexpressing AdipoR1 or AdipoR2, with the former promoting relatively acute activation and the latter more chronic activation respectively[20]

  • In the present study we have employed in vivo electrotransfer (IVE) to extend these observations and determine the effects of short-term (14 day) overexpression of AdipoR1 and AdipoR2 in mouse tibialis anterior muscle (TAM) of lean and obese mice fed a high fat diet (HFD) for 8 weeks

Read more

Summary

Introduction

Hypoadiponectinemia and adiponectin resistance are implicated in the aetiology of obesity-related cardiometabolic disorders, represent a potential therapeutic axis. In obese mice TAMR2 promoted systemic effects including; decreased weight gain; reduced epididymal fat mass and inflammation; increased epididymal adipoQ expression; increased circulating adiponectin. These results demonstrate that AdipoR1 and AdipoR2 exhibit overlapping and distinct effects in skeletal muscle consistent with enhanced adiponectin sensitivity but these appear insufficient to ameliorate established obesity-induced adiponectin resistance. The beneficial effects of adiponectin are mediated primarily via the action of two atypical seven-transmembrane domain (7TMD) receptors, AdipoR1 and AdipoR212 These receptors are structurally and functionally distinct from other 7TMD receptors, having intracellular N-termini and extracellular C-termini, and couple adiponectin to a range of downstream effectors including AMPK, PPARα, AKT and ERK by mechanisms that are incompletely understood[12,13,14,15]. Overexpression was achieved by in vivo electrotransfer (IVE) of the tibialis anterior muscle (TAM) that allowed characterization of local, TAM-specific changes in phosphorylation of downstream signaling effectors and expression of genes involved in glucose and lipid metabolism as well as determination of somewhat unexpected systemic effects in response to overexpression of AdipoR2

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call