Abstract
Forty crossbred barrows (average initial weight, 66.4 kg) were utilized to determine the effects of ractopamine (a phenethanolamine/beta adrenergic agonist) on protein accretion and synthesis, activities of cathepsins B, H, L and calcium-dependent proteinase and nucleic acid content of semitendinosus muscle (ST). All pigs were offered a 16% protein, mineral and vitamin fortified corn-soybean meal diet supplemented with either 0 or 20 ppm ractopamine for 14, 21, 28, 35 or 42 d. Protein synthesis (fractional rates) was studied in pigs at d 21 and 35; ST protease activities, protein and nucleic acid content were measured on d 14, 28 and 42. Ractopamine increased (P less than .01) ST total protein content and maintained RNA muscle concentration and total ST muscle RNA content. DNA content (mg/g ST) declined (P less than .05) upon ractopamine feeding, but total DNA per muscle remained unchanged except for d 42, when the ST muscles were largest. Fractional accretion rates (FAR) were 1.0 and 1.2% for control and ractopamine-fed pigs, respectively. Fractional protein synthesis rate (FSR) was higher (P less than .06) in ractopamine-fed pigs (6.1%/d) than in control pigs (4.4%/d). Fractional protein synthesis rate could account for the observed muscle hypertrophy and increased FAR. Estimated fractional breakdown rates (FBR = FSR - FAR) were 3.4%/d and 4.9%/d for control and ractopamine-fed pigs, respectively. The activities of the catheptic proteases and calcium-dependent proteinase were not affected by the treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.