Abstract

A high work of breathing can compromise limb oxygen delivery during sustained high-intensity exercise. However, it is unclear if the same is true for intermittent sprint exercise. This project examined the effect of adding an inspiratory load on locomotor muscle tissue reoxygenation during repeated-sprint exercise. Ten healthy males completed three experiment sessions of ten 10-s sprints, separated by 30-s of passive rest on a cycle ergometer. The first two sessions were “all-out’ efforts performed without (CTRL) or with inspiratory loading (INSP) in a randomised and counterbalanced order. The third experiment session (MATCH) consisted of ten 10-s work-matched intervals. Tissue saturation index (TSI) and deoxy-haemoglobin (HHb) of the vastus lateralis and sixth intercostal space was monitored with near-infrared spectroscopy. Vastus lateralis reoxygenation (ΔReoxy) was calculated as the difference from peak HHb (sprint) to nadir HHb (recovery). Total mechanical work completed was similar between INSP and CTRL (effect size: -0.18, 90% confidence limit ±0.43), and differences in vastus lateralis TSI during the sprint (-0.01 ±0.33) and recovery (-0.08 ±0.50) phases were unclear. There was also no meaningful difference in ΔReoxy (0.21 ±0.37). Intercostal HHb was higher in the INSP session compared to CTRL (0.42 ±0.34), whilst the difference was unclear for TSI (-0.01 ±0.33). During MATCH exercise, differences in vastus lateralis TSI were unclear compared to INSP for both sprint (0.10 ±0.30) and recovery (-0.09 ±0.48) phases, and there was no meaningful difference in ΔReoxy (-0.25 ±0.55). Intercostal TSI was higher during MATCH compared to INSP (0.95 ±0.53), whereas HHb was lower (-1.09 ±0.33). The lack of difference in ΔReoxy between INSP and CTRL suggests that for intermittent sprint exercise, the metabolic O2 demands of both the respiratory and locomotor muscles can be met. Additionally, the similarity of the MATCH suggests that ΔReoxy was maximal in all exercise conditions.

Highlights

  • Repeated-sprint exercise is characterised by brief periods of “maximal” exertion, interspersed with incomplete recovery periods

  • Mean inspiratory Pm was greater during inspiratory loading (INSP) compared to CTRL

  • Inspiratory muscle force generation ( Pm × fR) was almost certainly higher during INSP compared to CTRL (753.6% ±91.1%; effect size (ES) 13.04 ±0.65)

Read more

Summary

Introduction

Repeated-sprint exercise is characterised by brief periods of “maximal” exertion, interspersed with incomplete recovery periods. While phosphocreatine (PCr) hydrolysis and anaerobic glycolysis are heavily relied on as a rapid source of adenosine triphosphate (ATP) replenishment in sprint exercise [2, 5], the aerobic system plays an increasingly significant role in maintaining performance when sprints are repeated. Muscle reoxygenation between sprints may describe the quality of metabolic recovery [13] Improving this process typically increases repeated-sprint performance [14, 15], whereas a slower reoxygenation is associated with performance impairments [11, 13]. It is currently unclear if the O2 cost of exercise hyperpnoea has any influence on locomotor muscle oxygenation trends during repeated-sprint exercise

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call