Abstract
Near-infrared spectroscopy (NIRS) has been used to measure skeletal muscle oxidative function for more than 30years. Several indicators evaluate muscle oxidative function using NIRS during exercise, such as deoxygenation rate at the start of exercise (Deoxy-rate), changes in deoxygenation during exercise (ΔDeoxy), and reoxygenation speed after exercise (T1/2 reoxy, reoxy rate). Previous studies have reported that these muscle NIRS indicators are significantly correlated with muscle fibre type, phosphocreatine recovery rate, and peak oxygen uptake. In addition, muscle NIRS indicators have been applied to the study of a number of chronic health conditions, including patients with ischaemic heart failure. Recently, wearable NIRS devices monitor muscle function continuously and freely in the field, and we predict that NIRS devices will be widely applied to our lifestyles more than ever before. However, there are some critical problems with measuring muscle oxidative function using NIRS devices. We have previously reported that subcutaneous adipose tissue thickness (SATT) greatly influences the light pathlength and makes it difficult to quantify tissue deoxygenation, especially in the measurements of muscle deoxygenation from the skin surface. The effects of SATT need to, therefore, be corrected when using NIRS devices, especially when comparing differences in sex, age, and trainability, as the subjects' SATT could differ significantly. In addition, we have more recently reported that assuming constant mean pathlength (MPL) in NIRS leads to an inaccurate interpretation of muscle deoxygenation, since there are greater changes in MPL during incremental cycling exercise, especially at shorter wavelengths in the NIRS region. In this mini-review, we will summarise the indicators of muscle oxidative function using NIRS and the challenges of using an NIRS apparatus, especially during exercise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.