Abstract

We investigated the effect of muscle metaboreflex activation on left circumflex coronary blood flow (CBF) and vascular conductance (CVC) in conscious, chronically instrumented dogs during treadmill exercise ranging from mild to severe workloads. Metaboreflex responses were also observed during mild exercise with constant heart rate (HR) of 225 beats/min and beta(1)-adrenergic receptor blockade to attenuate the substantial reflex increases in cardiac work. The muscle metaboreflex was activated via graded partial occlusion of hindlimb blood flow. During mild exercise, with muscle metaboreflex activation, hindlimb ischemia elicited significant reflex increases in mean arterial pressure (MAP), HR, and cardiac output (CO) (+39.0 +/- 5.2 mmHg, +29.9 +/- 7.7 beats/min, and +2.0 +/- 0.4 l/min, respectively; all changes, P < 0.05). CBF increased from 51.9 +/- 4.3 to 88.5 +/- 6.6 ml/min, (P < 0.05), whereas no significant change in CVC occurred (0.56 +/- 0.06 vs. 0.59 +/- 0.05 ml. min(-1). mmHg(-1); P > 0.05). Similar responses were observed during moderate exercise. In contrast, with metaboreflex activation during severe exercise, no further increases in CO or HR occurred, the increases in MAP and CBF were attenuated, and a significant reduction in CVC was observed (1.00 +/- 0.12 vs. 0.90 +/- 0.13 ml. min(-1). mmHg(-1); P < 0.05). Similarly, when the metaboreflex was activated during mild exercise with the rise in cardiac work lessened (via constant HR and beta(1)-blockade), no increase in CO occurred, the MAP and CBF responses were attenuated (+15.6 +/- 4.5 mmHg, +8.3 +/- 2 ml/min), and CVC significantly decreased from 0.63 +/- 0.11 to 0.53 +/- 0.10 ml. min(-1). mmHg(-1). We conclude that the muscle metaboreflex induced increases in sympathetic nerve activity to the heart functionally vasoconstricts the coronary vasculature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.