Abstract

Chronic glucose infusion results in hyperinsulinemia and causes lipid accumulation and insulin resistance in rat muscle. To examine possible mechanisms for the insulin resistance, alterations in malonyl-CoA and long-chain acyl-CoA (LCA-CoA) concentration and the distribution of protein kinase C (PKC) isozymes, putative links between muscle lipids and insulin resistance, were determined. Cannulated rats were infused with glucose (40 mg. kg(-1). min(-1)) for 1 or 4 days. This increased red quadriceps muscle LCA-CoA content (sum of 6 species) by 1.3-fold at 1 day and 1.4-fold at 4 days vs. saline-infused controls (both P < 0.001 vs. control). The concentration of malonyl-CoA was also increased (1.7-fold at 1 day, P < 0.01, and 2.2-fold at 4 days, P < 0.001 vs. control), suggesting an even greater increase in cytosolic LCA-CoA. The ratio of membrane to cytosolic PKC-epsilon was increased twofold in the red gastrocnemius after both 1 and 4 days, suggesting chronic activation. No changes were observed for PKC-alpha, -delta, and -theta. We conclude that LCA-CoAs accumulate in muscle during chronic glucose infusion, consistent with a malonyl-CoA-induced inhibition of fatty acid oxidation (reverse glucose-fatty acid cycle). Accumulation of LCA-CoAs could play a role in the generation of muscle insulin resistance by glucose oversupply, either directly or via chronic activation of PKC-epsilon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call